Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI
نویسندگان
چکیده
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5-7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3-4 min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.
منابع مشابه
Advanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملSelf-gated Radial MRI for Respiratory Motion Compensation on Hybrid PET/MR Systems
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenging due to the respiratory motion during the exam. The advent of hybrid PET/MR systems offers new ways to compensate for respiratory motion without exposing the patient to additional radiation. The use of self-gated reconstructions of a 3D radial stack-of-stars GRE acquisition is pro...
متن کاملCorrecting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging
BACKGROUND The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. METHODS Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MR...
متن کاملNon rigid respiratory motion correction in whole body PET/MR imaging
INSERM UMR1101, LaTIM, Brest, France Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted...
متن کاملAdvances in 4D Gated Cardiac PET Imaging for Image Quality Improvement and Cardiac Motion and Contractility Estimation
Quantitative four-dimensional (4D) image reconstruction methods with respiratory and cardiac motion compensation are an active area of research in ECT imaging, including SPECT and PET. They are the extensions of three-dimensional (3D) statistical image reconstruction methods with iterative algorithms that incorporate accurate models of the imaging process and provide significant improvement in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2015